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ABSTRACT

A technique is presented for the design of
switcning thresholds for use in the lateral guidance
of an entry vehicle. Lateral maneuvers are ac-
complished by roll modulation about the relative-
velocity vector. The problem is formulated as an
optimal stochastic control problem, using the
projected lateral miss and the direction of roll as
state variables, Two different cost functions are
used to implement the tradeoff between miss-
distance and roll maneuvers. (i) the expected value
of the weighted sum of the number of rolls and the
square of the miss-distance, and (2) the probability
that the miss exceeds a preselected threshold with
the maximum number of roll maneuvers specified
a priori. The e¢ffects of navigation errors, environ-
mental uncertainties, and variations in vehicle
aerodynamic characteristics are included in the
formulation, Dynamic programming is used to
generate the optimal switching thresholds as
functions of projected lateral miss-distance. The
first cost function leads to a single threshold
function, whose values depend on the relative
weighting between miss~-distance and number of roll
maneuvers., The second cust function provides a
better description of the problem, but requires as
many threshold functions as the maximum number
of roll maneuvers permitted. Simulation results
are presented for a low-cross-range vehicle,
showing the important system-design tradeoffs. In
the cases studied, satisfactory terminal accuraties
were obtained with as few as three roll reversals
over a typical entry trajectory.

1. INTRODUCTION

This paper is concerned with the lateral
guidance of a shuttle vehicle during ithe period of
hypersonic entry. A low-cross-range orbiter is
considered (L/D = 0.5), entering the atmosphere
at a relatively shallow flight-path angle (-1.5
degrees). To minimize heating effects, the vehicle
maintains afixed, high angle-of-attack during entry
(about 60 degrees).

Entry guidance under the abuve conditions is
accomplished by roll modulation, i.e. by rolling the
lift vector around the vehicle's velocity vector from
one side to the other. This technique has been used
successfully for entry guidance during all Apollo
flights1,2.3] The longitudinal and lateral guidance
problems can be effectively decoupled. The
vertical-plane aerodynamic fcrces necessary for

solving the down-range guidance problem determine
the magnitude of the roll angle. Lateral-guidance
requirements are then satisfied by periodic
reversals of the direction of roll,

The problem is essentially to develop the best
procedure for deciding when to switch the direction
of roll from one side to the other, recognizing that
uncertainties will be present in the operational
environment, the navigation system, and the
aerodynamic characteristics of the vehicle., A basic
tradeoff is involved between the number of roll
maneuvers (switchings) and the lateral miss
distance at the terminal time. From the viewpoint
of terminal accuracy, frequent roll reversals are
desirable, Passenger comfort and roll-control-
system fuel requirements, on the other nand, are
best satisfied by a minimum number of roll
reversals, These factors must be balanced off
against each other,

The approach adopted here is to formulate
the problem as an optimal stochastic control
problem, This provides a framework for
systernatically trading-off the number of roll
maneuvers vs, the miss distance, Two methods
have been considered for performing this important
tradeoff:

1,) Minimize the expected value of th~ weighted
sum of the number of roll maneuvers and the
mean-square-miss distance,

2.) Minimize the probability that the miss is
greater than a specified value, given a fixed
maximum permissible number of roll
maneuvers,

Optimal switching thresholds have beer found for
both of these cases, using dynamic programming
techniques. Important factors such as vehicle
lateral-maneuver capability, atmospheric-density
variations, navigation-system errors, variations in
the vehicle's L/D, and attitude-control system
oscillations are all included in the system-design
process,

2. FORMULATION OF THE PROBLEM

As stated above, the lateral entry control
problem may be effectively decoupled from the
in-plane guidance system. The in-plane nominal
guidance policy is determined first, yielding a
trajectory which attains the required range to the
target, within the maximum lift capability of the
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vehicle. At each point on the trajectory a certain
vertical component of lift is required. The
spacecraft supplies the required lift by roll
modulation (i.e. the vehicle is rolled to attain the
appropriate vertical component of lift). Rolling the
vehicle right or left produces lateral trajectory
control. In effect, the lateral control capability is
determined by the in-plane nominal trajectory.
Since therominal trajectory is specified at the onset
of entry, the lateral control capability is also known

at that time,

Let o(t) be the roll angle‘ magnitude obtained
from the nominal in-plane trajectory and let u(t,)
denote the lateral control input at time tj. Th?s
control is ascalar quantity constrained to take only
the values +1, 0, -1, Application of control +1 or
-1 commands the vehicle attitude-control system
to roll the vehicle to angles +o or -9 respectively.
Application of zero control produces no change in
vehicle attitude. Vehicle roll rate is constrained
to (<109/sec), so the commanded roll angle is not
attained immediately. For the purpose of
simplifying the optimization problem, it is assumed
that the interval between control decisions exceeds
the time required to roll the vehicle through an angle
2¢, In effect, the vehicle is committed to complete
a roll maneuver once the command is given., As a
result, at all control decision times t,, the vehicle
roll angle is either +o(t,) or -o(tp).

A convenient state variable for the lateral
control problem is the direction of roll. Hence,
the state variable x;(n) is chosen to indicate tke
sense of vehicle roll angle at the control decision
time t,.

+1 indicates roll angle #o(tn)
X, (n) =
-1 indicates roll angle -a(tn)

State x(n) satisfies the following difference equation

xl(n*l):xl(n)*Zu(n)z xl(())-tl (2-1)
with control u(n) constrained as follows:
0or -1 ifxl(n)=ﬂ
uln) = (2-2)
0 or +1

if X, (n) = -1,

A second state variable for the lateral control
problem is the projected lateral miss-distance (x,)
that would result if a zero roll attitude (no latergl
aerodynamic forces) was maintained from the
present time to the end of the problem. The state
x9 satisfies the following difference equation:

xz(n*l)=x2(n)~a(n)xl(n)*b(n)u(n)#v(n). (2-3)
The initial state x2(0) is a normally distributed
random variable whose statistics are known.
Parameter a(n) specifies the magnitude of the change
in xg in the interval to t,,; resulting from a
roll angle of #(t,), and x;(n) denotes the sense of
the roll angle. Thus, the second term on the right
of (2-3) is the change in terminal miss distance
produced by the roll angle of the vehicle. Also,
b(n) is the magnitude of the effect of a roll maneuver

*Roll angles are defined about the relative wind
vector.

commanded at t,, so the third term on the right
accounts for the effect of a roll maneuver com-
manded at time t,. Finally, v(n) is an independent
gaussian sequence with mean and autocorrelation
given as:

Vin) n*m
E [vin)] =0 E [vin)vim)] =
0 ntm
The quantity v(n) serves to model random

disturbances to the vehicle. Included are the effects
of atmospheric density variations, high freouency
vehicle oscillations, uncertainties in vehicle ift and
drag characteristics, and random winds.

There is an on-board inertial measurement
unit (IMU) which provides measurements of the
non-gravitational accelerations of the vehicle,
These measurements may contain additive random
errors which are assumed to be gaussian, The
controller processes this data and utilizes it as
feedback information to determine the control,

With these definitions and assumptions two
optim 1l control problems can be posed.

Problem #1

Minimize the expected total number of roll
maneuvers plus the weighted mean-square lateral
miss distance at the terminal time, The cor-
responding cost function is

3
3 E[}‘ lum |+ 3x2 @n)],

n=0

where X\ is aweighting on mean-square lateral miss
distance, tq is the time at which the last control
decision is®made, and tq+1 is the fixed terminal

time.
Problem #2

Minimize the probability that terminal lateral
miss-distance exceeds a given value ([), under the
condition that the total number of roll maneuvers
be consirained to no more than a given positive
integer (M). The cost is

Jz = E [g (x2 (qﬂ))].
where g is the indicator function,

0"]:[5{
g(x) =
ltf‘x|> £

and the constraint on roll maneuvers is
q

z |u (n)l sSM,

n=0

Cost Jg represents the probability that the lateral
miss-distance magnitude is greater than the miss-
tolerance /.

Both of these problems will be solved in the
sequel, In Problem #1 the expected cost in fuel
for rolling the vehicle is balanced, by appropriate
weighting, against the mean-square lateral miss



distance. Problem #2 yields minimum probabilit
of a miss distance greater than the given value [,
under the constraint that no more than M roll
maneuvers are permitted. In Problem #1 the
designer must determine, by choice of )\, the
importance of roll fuel relative to miss distance.
In Problem #2 the designer chooses the permissible
miss tolerance and the maximum permissible
number of roll maneuvers.

The two cost functions have certain advantages
and disadvantages. Cost Jj; requires a subjective
choice of weighting between %uel and miss distance,
whereas Jo requires choice of miss tolerance and
the total roll control fuel allotment. Since the
designer usually knows the tolerance on miss
distance and the fuel allotment, it is felt that cost
function Jg allows a more objective choice of
parameter values than does J;. It will be shown
however, that the optimal control for Jg is much
more complex than the optimal control for J;. The
relative merits of the two optimal controls will be
discussed in some detail.

3. METHOD OF SOLUTION

It is the task of the controller to utilize the
available measurement information to determine the
optimal control to be applied at each decision point.
As formulated above, the lateral entry dynamics
aredescribed by linear difference equations driven
by an additive white gaussian noise sequence,
Further, the measurements avcoilable to the
controller are liniag with additive gaussianerrors.
It has been shown®,9 that for such a linear gaussian
system, the mean of the state conditioned on the
measurement history is a sufficient statistic for
determining the optimal control. That is to say,
the conditional mean summarizes all the available
information necessary to determine the optimal
control.

An onboard navigation system processes the
measurements to obtain estimates of vehicle
position and velocity via the familiar discrete time
estimation formulas of Kalman,®* These are also
the mean position and velocity, conditioned on the
measurements. Upon projecting these estimations
forward to the terminal time, a recursion formula
for the conditional mean of x9(n) is obtained.

R,(n) =8,(n=1) +a(n=1)x (1=1) “b(n=1) uln=1) + K(n) [m(n) - .’.\(n)],
(3-1)
where m(n) represents the IMU measurement and
(n) is the estimate of m(n) based on prevjous
measurements. Hence, the difference m(n) - M{(n)
is the so-called measurement residual, and K(n)is
the optimal weighting of the residual. Defining

9'2(n)-92(n-l)*a(n-l)xl(n-l)*h(n-l)u(ni. (3-2)

s(n) = K(n) [m(n) - A(n)]. (3-3)
Equation (3-1) becomes:

Qz(n) = Q'z(n) + s(n), (3-4)

where Qé(n) is the extrapolated estimate of xs(n)
and s(n) represents new data obtained from m(n).
Itis known that s(n) is a white gaussian sequence4,5
with zero mean and covariance S(n) given as:

S(n) = Py(n-1) - Py(n) ¢ Vin), (3-5)

where P2 is the covariance of the error in the
estimate of x2. The corresponding probability
density for s(n) in terms of the dummy variable

(&) is:

fyim) O — — 13-6)

ke
(278 (n} L I ‘Izﬂ?)l'
With these definitions in hand it is possible
to proceed to the determination of optimal controls,
In the previous section two optimization problems
were posed., The method of solution for each will
be presented in turn,

A. Minimization of J;*

In References [4,5| a general recursicn
formulais developed for the minimum expected cost
to complete the problem from time t,, conditioned
on the measurements up to time t,. Since the
conditional mean of the state is a sufficient statistic,
this cost may equivalently be conditioned on xj(n)
and Xg(n). Hence define

C":(xl (n), Qzln). n) = minimum expected cost to
complete the problem from
tirne t,, conditioned on the
state sl(n) and estimated
state Xo(n),

For the problem at hand (i.e, minimize J;) the
appropriate recursion formula is:

C*(x, (n), 92 (n), n) =

min

o
1) |u(n)| + / l’ﬂ(n‘”_((')(" (xl(n*l),ﬁé(nolh Entdl),
b

(3-7)

subject to the control constraint (2-2) and with the
terminal condition
M 2

c"‘(xl(qn),Qz(qon,q»n=v:t2 x5 (q+1) |(l(qon,¢zm~n“

:%[Q;(rvl)*l'z(q‘l\}, (3-8)

Assuming the statistics of the IMU information
are known a priori, the error variances Py(n) can
be determined a priori and densities f (. 1)(3) can
be determined a priori from (3-5) and (g-é . With
these functions Eqs. (3-7), (3-8), (3-2) and (2-1)
are solved via a backward step-by-step dynamic
programming process, starting at the terminal
time. By performing the minimization in (3-7) for
all possible values of xj(n) and X2(n), the optimal
&eedback control is obtained as a function of x;(n),

o(n) and n. Details of the solution method may be
foundin [6]. Numerical results for the shuttle entry
problem are presented in Section IV below,

Results of the dynamic programming solution
reveal that the control is determined by thresholds,
It is found that if X9(n) exceeds the threshold, then
the optimal control commands the vehicle to change
the direction of roll. If Xy(n) does not exceed the
threshold, then the roll direction is not altered.,

* This solution was presented in [6]. It is sum-
marized here for completeness.



B. Minimization ofﬂ

Although two state variables are sufficient to
solve problem Jj;, an additional state 1s necessary
in the solution of J2. Since the total number of
roll maneuvers is constrained in this problem, the
minimum expected cost to complete the process and
the optimal control depend upon the number of roll
maneuvers remaining. Therefore, a third state is
defined as

number of roll maneuvers expend

Xq (n) -
. before time t

i
The state x3(n) satisfies the recursion formula:
X, (ne1) = xq(n) + futm]; x500) - 0.

(3-9)
The minimum expected cost to complete the problem
is then redefined as:
= minimum expected

cost to complete the

problem from time

th, conditioned on

states x(n), x3(n)
nd estimated state

dn).
Sincenomore than M roll maneuvers are permitted,
the control constraint (2-2) must be modified as
follows:

C"x, (n), 92 (n), x4 (n), n)

0 if xa(n)-M

uln) = 0or +1 lfxs(n)<M,xl(n)=-l

(3-10)

Oor -1 if x3(n)<M, xl(n)=*l.

The appropriate rzcursion formulafor the minimum
expected cost to complete the problem is then

c*(x, (), %, (n), x,(n),n) =
1 s b (3-11)

i «
Gl [[. fatne1) (OC* (x; (n+1), Q3 (n+1) + t"‘a‘"*”"-”’“l.

u(n)

with the terminal condition

C* (x,(q+1),8, (q+1), x, (q+1), q+1) =

E [g(xz(q*l)) le(q*l).Qz(qH), xa(qtl)]

Qz)dt.

{
-f' L (sz)g(t)atrI-[; rxzft (3-12)
‘e 2 )

where
"‘2 (t|92)

is the probabi&ity density of x4(q+1) conditioned on
the estimate ¥,(q+1). The relation for fx2(<"|92)
is:

«&-% (q4»l))2
W, T R F
x, 12 7P, (ae1 2 TP,

As was the case for Jy, the solution of (3-11),
(3-9), (3-2) and (2-1) with the control constraint
(3-10) and terminal condition (3-12) is accompiished
via dynamic programming., The minimization in
(3-11) yields the optimal control as a function of
x;(n), X9(n), x3(n) and n,

(3-13)

As before, the control is determined by
thresholds. In this case, however, the thresholds
are different for different values of x3(n), the number
of rcll maneuvers expended. It is found that as
x3(n) increases (i.e. fewer maneuvers remaining),
the thresholds become larger so X9(n) must be
larger before a maneuver is made. In this way
the controller tends to conserve the remaining roll
maneuver capability.

4, APPLIC ATION OF DESIGN TECHNIQUE TO
SHUTTLE ENTRY PROBLEM

The particular case chosen for study was the
entry of a low-cross-range orbiter on a nominal
descent trajectory from a 270 nmi circular orbit,
To minimize heating effects, it was assumed that
the vehicle maintained an angle-of-attack of 60
degrees during the entry trajectory, re.ultin &n
an L/D of about 0.5 and a W/CpjAof about 22 xbsfft .
The vehicle was assumed to have a flight-path angle
of -1,5 degrees at entry interface (h = 400,000 feet),
With a maximum deceleration limit of 2.5 g's, the
useable footprint under these conditions was about
1500 nmi from front to back, and about 200 nmi
maximm to either side”,

The assumed down-range guidance concept
was a modifiad perturbation guidance system?
similfr to the one used for the final phase of Apollo
entry!»3, The basic equations are given in Appendix
A for the required roll-angle magnitude.

In order to apply the techniques of the
preceding section, itis firstnecessary to determine
the coefficients a(n) and b(n) used in Eq. (2-3).
To accomplish this, simulated entry trajectories
were run to various points along the footprint
centerline using the relations of Appendix A, but
with all lateral aerodynamic forces set equal to
zero., The roll angle (¢) required to obtain the
in-plane aerodynamic forces was then used to
compute a(n) from the following relation:

t
n+l
Lsineor
s o [ TG0 g,
t h
n

(4-1)

where L represents the aerodynamic lift force per
unit inar 3 acting on the vehicle, rgo is the range-to-
go to the end of the problem, and vy is the vehicle's
hor’'zontal velocity. Consecutive control decision
times in the simulations were spaced 10 seconds
apart, so that each a(n) represents the change in
predicted miss xz(n) during a 10-second period.

For the purpose of determining b(n), an
average roll angle of 50 degrees was assumed,
which is reasonable for a center-of-the-footprint
trajectory. In addition, a 10 deg/sec roll rate wa:
assumedduring all roll-reversal maneuvers, Under
these assumed conditions with a control-decision
interval of 10 seconds, the value of the projected
miss-distance is unchanged over an interval where
:.he 1;011 angle is reversed. Thus b(n) = a(n) in Eq.
2-3).

The rms value of the random variable v(n)
in Eq. (2-3), which is used to account for the effect
of random variations in the environment and the
vehicle's aerodynamic characteristics, was com-
puted from the relation:

a,n) = cvla(n)/umol.

where the angle ¢ used here is the average value
of the roll angle over the iterval from thtot .
The same functional form is used throughout tl'}e
trajectory tomodel v(n) as for a(n). The coefficient
cy is selected to give a specified total integrated
rss error for the overall trajectory, i.e. to specify

q

Y [o (n)]’ .

n=0



A typical value used for the integrated rss error
was 3.7 nmi. A representative set of switching
thresholds computed by the methods of the preceding
section, for the first type of cost function (J,), is
shown in Fig., 1, A center-of-the-footprint
trajectory is assumed here. In this particular case
a A\ of 0,08 was used, which weights one roll
maneuver equally with a projerted miss of 5 nmi,
To use this type of threshold function for lateral
guidance, a computation is first made of projected
mise distance, using the best available estimates
of the vehicle's state. The estimated miss (X3) is
then compared with the stored threshold (x5g) and
the following control law applied.

+1 ilxl(s.)-‘I.Qz(n)<-x“(nb

uln) = -1 i)+, R, 0> x,, )

0 otherwise

The shape of the curve shown in Fig. 1 reflects
the manner in which lateral maneuver capability
decreases during entry as the vehicle speed is
decreased. At very low speeds where the maneuver
capability is small compared to the rms value of
projected miss, the thresholds again increase.

The effect of variations in the relative
weighting function between miss distance and roll
maneuvers (A\) for J, is shown in Fig, 2. As can
be seen, increasing \ will decrease the threshold
levels and, hence, increase the expected number
of roll reversals. The effect of the rss error in
X¢o due to random variations in the characteristics
of the vehicle and the environment are shown in
Fig. 3. The thresholds are seen to decrease as
the magnitude of the random disturbances increase,

Cost = E|no. of rolls + %( projected miss )2]

160 +
E = expected value
A = constant used in weightit., miss rel. to
roll maneuvsrs
1404

o Roll rate=10%/'s
® )A=0.08 (5Snmi=! roll)

1204 o miss distance prediction errors due to
uncertainties in vehicle chars. and
environment = 3.7 nmi

PROECTED MISS-DISTAMTE THRESHOLD (nmi)

0 4000 8000 12000 000 20000 2000
RELATIVE SPEED (f/s)

Fig. 1 Typical Switching Threshold for
Cost Function No. 1
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A set of switching thresholds for the second
type of cost function (Jg) is shown in Fig. 4, assuming
that up to four roll reversals are permitted. With
this particular cost function a different threshold
curve is used, depending on the number of roll
maneuvers remaining. As can be seen, the threshold
values increase as the number of rolls remaining
is decreased. For the particular conditions assumed
in Fig. 4, essentially no performance improvement
is obtained by permitting more than three roll
maneuvers,

A summary of simulation results for the
second cost function (J,) is given in Table 1, The
form of the data is the probability that xo will be
smaller than a specified level for up to Tour roll
maneuvers permitted, A center-of-the-footprint
trajectory is used in all cases,

Cost + Probability that projected miss exceeds
a preselected value

2004 e Roll rate < 10% s
@ Permissible no rolls <4
r e miss-distance predictiori errors due to
uncertainties in vehicle chars. and
160 ¢ environment 3.7 nmi

® nav. systemerror -1 7 nmi

® Projected miss region =3 nmi from aim point
(minimize prob. that miss >3 nmi)

noJ»

1 Roll to go
80+ 2 Rolls to go-—
3 4Rolls to 90

0r

PROJECTED MISS-DISTANCE THRESHOLD (nmi)

—_,—————— e ————————
12000 16000 20000 24000

VELOCITY (t/s)

Fig. 4 Typical Switching Thresholds for
Cost Function No. 2

There are several interesting points to be
seen from the data of Table 1. If the level ([) below
which x9 should lie is large compared to the rms
navigation errors and random environmental or
aerodynamic characteristics, then large probabil-
ities can be obtained with only two roll reversals
(Run 137). If, on the other hand, the level (/) is of
the same order as the rms navigaticn errors, then
the probabilities attained are small regardless of
the number of roll maneuvers (Runs 138 and 139,
For the cases shown in Table 1 it appears that the
probabilities are not significantly increased by
using more than three roll maneuvers.

5. SIMULATION RESULTS

In order to evaluate the lateral guidance
techniques, a series of reentry trajectory

simulations was made using the optimal thresholds.
All runs were made over a rotating earth with the
vehicle traveling East in the equatorial vlane,

Environmental disturbances have a significant
effect on the ability of the lateral guidance system
to meet the objective of satisfactory terminal ac-
curacy with aminimum of roli maneuvers, Inorder
to test the statistical design in a realistic manner,
real-world models of these disturbances were
included in the simulation of the actual trajectories.

The wind model used was the 95%-design
steady-state wind profile for the Fustern Test
Range®. In summary, the wind speed (assumed
cross-track here) w.; ass.u..ed to vary linearly
from a maximum of 400 ft/sec above 200,000 ft,
altitude to 80 ft/sec &t 80,000 ft, altitude, The
density variation model, also taken from the same
reference, was based on data taken at Cape Kennedy.
The deviations, given in percent, are of the same
sign at all altitudes and are taken with respect to
the 1963 Patrick Reference Atmosphere. The one-
sigmadeviation magnitude varies linearly from 2,6%
at 90,000 ft, to 9% at 210,000 ft,, and then to 3.5%
at 270,700 ft, Above 270,000 ft, the deviation is
assumed to bc constant at 3.5%,

The combined effects of vehicle attitude oscil-
lations due to aerodynamic effects and attitude
control deadbands were simulated by varying the
vehicle roll angle by afixed amountover a 4-second
interval, the value of the variation being determined
independently for each interval by a pseudo-random
number generator. A nominal value of one deg.
rms, normally distributed, was assumed,

A summary of the terminal down-range and
cross-range miss-distances, along with the
required roll maneuvers, is given in Table 2 for
several selected runs, All data are presented at
an altitude of 100,000 ft, and are based on the
quadratic terminal cost function, Thefirst two runs
compare results for a conservatively designed
threshold and one designed using the methods of
this paper. The case using the optimized thresholds
reduced the number of required roll switchings from
seven to three without a significant degradation in
terminal accuracy. Thevalue of the projected miss
x9 and the threshold x5, are plotted vs. speed in
F%g. 5 for both the conservative and optimized cases,
The conservative threshold was computed as a
quadratic in speed. From the figure, t can be seen
that the use of the conservative threshold causes
the first roll maneuver to occur too soon, In addition,
subsequent roll switching points are not optimally
located, since the shape of the conservative curve
is incorrect.

With the use of the optimized threshold,
however, the projected miss-distance essentially
follows the threshold after the first roll switching,
thus minimizing the total number of switchings.
The effect of flying to an extreme out-of-plane point
is shown in Run #3, which went to the edge of the
lateral footprint (180 nmi out-of-plane}, In this case
only two roll maneuvers were required and the
terminal miss-distance was essentially unchanged,

A series of runs was made to investigate the
effect of environmental disturbances on the system
performance. Run #4 was made to determine the
effect of a 95% steady-state side wind,
seen that the lateral miss-distance

It can be
increased



TABLE 1
STATISTICAL DATA FROM THRESHOLD-DESIGN SIMULATION RUNS

Cost function J2 (minimum probability)
Trajectory range from interface (h = 400,000 ft) * 2550 nmi

rms miss- | rms mias- | width of |Initial Probability of Being Inside Region
distance distance terminal Rell Maneuvers-to-Go

Description | Run No. | navigation | prediction nglon am—

error error (2) 1 2 3 1

nmi nmi nmi
-+

Nominal 135 3,0 3.1 6 0.49 | 0,85 0,89 0,91
Vary rms '
terminal 136 3.0 11.8 6 0.25 | 0.73 0.85 | 0.88
miss-
distances 139 10,0 3.1 6 0,43 | 0,63 0,65 . 0,66 )
Vary region 137 3.0 3.7 12 n, K1 0, 9956 0, 9987 0, 9992
width 138 1.0 3.7 2 0,18 | 0,51 0, 60 0, 66

slightly to one nmi, but only two roll maneuvers
were required. With the same side wind, 3-sigma
density variations and L/D variations (Run #4), the
lateral miss-distance increased to two nmi, while
requiring two roll maneuvers. For this case, the
vehicle L/D was reduced by 4% from the value used
to design the thresholds, and the signs of all errors
were taken in the worst sense. The effect of random
vehicle oscillations is shown in Run #5; the lateral
miss is less than one nmi and two roll maneuvers
were required.

6. SUMMARY OF RESULTS AND CONC LUSIONS

The main result cf the paper is the
development of a, technique for the design of
switching thresholus for use in the lateral guidance
of a roll-controlled reentry vehicle. The form of
the basic tradeoff between number of roll maneuvers
and miss distance can readily be specified by the
choice of the cost function. Two different cost
functions have been minimizea: (1) the expected

value of the weighted sum of the number of roll
maneuvers and the square of the miss-distance; (2)
the probability that the miss-distance ev eeds a
preselected value, with the maximum num v« of roll
maneuvers specified apriori, The methoc :ic * loped
permits factors such as vehicle niwreuver
capability, navigation-system errors, and environ-
mental uncertainties to be included in an orderly
manner, '

The design technique is applied to the entry
problemof a low-cross-range shuttle vehicle, using
dynamic programming to find the optimal
thresholds, Of the two cost functions considered,
it is felt that the second one (J,), which minimizes
the probability of the miss exceeding a fixed value
for a given number of roll maneuvers, provides a
much better formulation of the key design tradeoff,
The resultant switching logic, however, is more
complex, since the r« Juired number of thresholds
is equal to the maximum permissible number of
roll meneuvers, With the first cost function (Jy),

TABLL 2

ACTUAL TRAJECTORY DATA WITH WIND, DENSITY, L/D
VARIATIONS, VEHICLE ATTITUDE OSCILLATIONS

+  No IMU or initial-condition errors
+  Downrange {rom interface (h = 400, 000 ft) = 2550 nmi

Terminal Miss-Distance Roll Switching to
Run No. Description Downrange (nmi) |Crossrange (nmi) | h = 100, 000 ft
1 Conservative 0,04 -0,72 7
Threshold (Fig. 5) |
2 | Optimal 0.04 -0, 60 , 3
Threshold
3 Optimal j, max, lateral range -0,07 -0, 69 2
Thresholds ; (180 nmi)
4 | 95% wind -0, 25 -1, 04
5 | 95% wind, 3 density, -1.89 2,02 2
| 4% L/D error
6 ! random att, osc, -0. 42 -0, 95 2
| (1 deg rms)
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Fig. 5 Comparison of Miss-Distance Trai‘ectoriel
for Conservative and Optimized Thresholds

on the other hand, only a single threshold is required.
The tradeo'f between miss-dirtance and roll
maneuvers in this case, however, is accomplished
less direc:ly through the weighting coefficient ()
which m.at be selected by the system designer.

Simulation results are presented for various
entry trajectories, including variations in the
aerodynamic characteristics of the vehicle and the
operational environment. For the particular cases
studied, it was found that satisfactory terminal
accuracies could be obtained with three roll
maneuvers or less. Permitting a larger number
of roll maneuvers did not significantly improve the
system accuracy. In effect the paper demonstrates
the application of stochastic control theory to a
current probiem of spacecraft control-system
design and illustrates the usefulness of optimization
theory as an aid in making design-tradeoff decisions,
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APPENDIX A
DOWN-RANGE ENTRY GUIDANCE EQUATIONS

The required in plane L/D, i,e. (L/D)y is
based on the difference betwee' the distance to the
terminal point (/) and the esumated entry range
of the vehicle (), using the perturbation-guidance
technique2,3, The basic relation is:

1

8o
(L/D)v . (l./D)o + 4 [m"\';J (".r - "), (A-1)

where (L./D)g is the preselected nominal L./D cor-
responding to a center-of-the-footprint entry
reference trajectory. The sensitivity 94/3(L/D)

is obtained from a stored reference-trajectory table
at the current vehicle speed. The entry range (¢)
is computed from the vehicle's estimated speed (v),
verticul velocity (r), anddrag (d), using the relation:

0% O u(:f) (+ - #p) o(g%)m - dg). (A-2)

where R, I'p, and dg are the reference trajectory
values o rarpgo-to-go. vertical velocity, and drag
at the current speed. The sensitivities (90/dr) and
(860/8d) are also stored in a table along with the
other reference-trajectory quantities required in

Egs. (A-1) and (A-2).

The overall guidance concept requires that
the vehicle roll about its velocity vector to achieve
the in-plane L/D determined by Eqa. (A-1) and
(A-2). The required roll angle (¢) is given simply

by

¢ con”! [W/pryreL/D)). (A-3)

where the subscript V is used to differentiate
between the total and ‘n-plane (L/D).
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